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F
or more than a quarter of a century, microwave engineers have had the benefit
of a foundation of mutually interacting components of measurement, model-
ing, and simulation to design and test linear components and systems. This
three-legged stool included measurements of S-parameters using a calibrated
vector network analyzer (VNA), linear simulation analysis tools (e.g.,

Touchtone), and models based on S-parameter blocks, which can use measured data or
simulated frequency-dependent data.

S-parameters are perhaps the most successful behavioral models ever. They have the
powerful property that the S-parameters of individual components are sufficient to
determine the S-parameters of any combination of those components. S-parameters of a
component are sufficient to predict its response to any signal, provided only that the sig-
nal is of sufficiently small amplitude. This follows from the property of superposition,
which governs the behavior of linear systems, the systems for which S-parameters apply.
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The ability to measure, model, and simulate using S-
parameters means, in principle, every problem imagin-
able for linear system design and test is solvable.

Simply put, S-parameters are just complex num-
bers. At most, they are matrices of complex numbers
for devices or circuits with multiple ports. S-parame-
ters are important for several reasons. For one thing,
they are easy to measure. Standard vector-corrected
network analyzers easily provide the data from real
components. The data is reliable and repeatable. The
data is also useful because it represents an intrinsic
property of the device under test (DUT), independent
of the measurement system used to provide the data.
In particular, the S-parameters of a two-port system are
defined by ratios, which conveniently produce results
completely independent of the details of the stimulat-
ing signal (such as its phase). That is, the S-parameters
of a DUT are invariant with respect to the phase of the
incident wave.

Despite the great success of S-parameters, they are
severely limited. Conventional S-parameters are
defined only for linear systems, or systems behaving
linearly with respect to a small signal applied around
a static operating point (e.g., fixed bias condition of a
transistor). In fact, virtually all real systems are non-
linear. They generate harmonics and intermodulation
distortion and cause spectral regrowth. S-parameter
theory doesn’t apply to such systems. It may be a
good approximation over some range of input, but it
is incapable of even estimating the nonlinear
response of real systems. 

Perhaps the most important driven nonlinear sys-
tem of interest is the power amplifier. Its entire raison
d’etre is to amplify a signal. Amplification requires an
active, nonlinear device and a time-varying signal.
Thus an amplifier, when it is actually amplifying a sig-
nal, is a driven nonlinear system, which falls outside
the class of systems for which (linear) S-parameters
apply. Most previous attempts to treat such systems as
linear systems parameterized by drive levels are, in
fact, flawed. They ignore new phenomena and terms
that appear only when nonlinear systems are driven
but for which there is no analog in linear systems. It is
not surprising that those ad hoc attempts to generalize
S-parameters result in inferences (e.g., test results, sim-
ulations, and designs) that are unreliable, nonrepeat-
able, or flat out don’t meet specs. 

This article explains and then goes beyond the
limitations of simple-minded (and incorrect) general-
izations of S-parameters to driven nonlinear systems.
We will show how a simple yet rigorous framework,
with corresponding fully interoperational nonlinear
model, measurement hardware, and nonlinear simu-
lation environment, can circumvent these problems
at a very modest additional cost. If we are willing to
consider only the addition of a second complex num-
ber, (or a second matrix of complex numbers for

devices with multiple ports), it is possible to do for
driven nonlinear systems what S-parameters do for
linear systems. Moreover, it has already been demon-
strated that there are now interoperable tools of mea-
surement systems, nonlinear models, and large-sig-
nal simulation environments ready to provide the
infrastructure for nonlinear design and test.

Imagine one could describe driven nonlinear sys-
tems in a way similar to S-parameters for linear sys-
tems. That is, imagine there was a way to measure,
model, and simulate nonlinear driven systems that
would allow correct, reliable, and repeatable inferences
of what an arbitrary arrangement of such systems
would do under drive. This capability is actually neces-
sary for multistage amplifiers, where the input stage of
the second amplifier, for example, is not perfectly
matched at the fundamental or generated harmonics
and injects signals back into the output of the prior

stage. We will demonstrate a new nonlinear model,
called the polyharmonic distortion (PHD) model,
which is perfectly mated to existing nonlinear simula-
tion capabilities that can be identified with advanced
nonlinear measurements as seamlessly as S-parameters
for the linear case.

On one hand, this might seem surprising, since
nonlinear problems are hard. Nonlinear systems
respond to signals of different shapes and sizes in an
infinite number of ways. Common questions include:
“What kind of signals should I use to stimulate the
DUT?,” “What kinds of useful inferences can I make
with this data?,” “How can I analyze this data to
make predictions of DUT behavior?,” and “Can I
measure what I need for the job with existing com-
mercially available equipment?” 

PHD Modeling
PHD modeling is a black-box, frequency-domain
modeling technique. The annotation black box refers to
the fact that no knowledge is used nor required con-
cerning the internal circuitry of the DUT. All informa-
tion needed to construct a PHD model is acquired
through externally stimulating the signal ports of a
DUT and measuring the response signals. The fre-
quency domain formulation means that the approach
is well suited for distributed (dispersive) high-fre-
quency applications. This is true for both the mea-
surement techniques and the modeling approach.
Note that these considerations are true for conven-
tional linear S-parameters, which can also be consid-
ered as a black-box frequency-domain modeling

PHD modeling is a black-box frequency
domain modeling technique.
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technique. The advantage of using a black-box
approach is that it is truly technology independent. It
does not matter whether one is dealing with silicon
bipolar technology or compound semiconductor
field-effect transistors. Another advantage is that a
black-box model, unlike a circuit schematic, can be
shared with and used by other people without reveal-
ing the details of the internal circuit. In other words,
it provides complete and fundamental protection of
intellectual property. This characteristic is highly
appreciated in a business environment. Of course,
with black-box modeling, as with all engineering
solutions, there are tradeoffs to consider in practical
use conditions. Black-box models are, by definition,
only valid for signals that are close to the signals that
were used to simulate the DUT to produce the
responses used for model identification (extraction).
If the model needs to be valid across a wide range of
signals, then a wide range of excitation signals is
needed and, as a result, the measurement time will be
long and the resulting model will be complex.

The PHD model is identified from the responses
of a DUT stimulated by a set of harmonically related
discrete tones, where the fundamental tone is domi-
nant and the harmonically related tones are relative-
ly small. As such, it is typically applied for modeling
microwave amplifiers with narrowband input sig-
nals. Note that the narrowband constraint is not on
the amplifier itself but on the input signal. It is per-
fectly possible, for example, to describe the distortion
of a narrowband input signal for a wide range of car-
rier frequencies.

The basic idea is that the PHD modeling approach
can be used as a natural extension of S-parameters
under large-signal conditions. One connects a DUT to
a large-signal network analyzer (LSNA) instrument,
and a model is automatically extracted that accurate-
ly describes all kinds of nonlinear behavior such as
amplitude and phase of harmonics, compression
characteristics, AM-PM, spectral regrowth, amplitude
dependent input, and output match. The real beauty
of the approach is that it provides much more than a
bunch of plots of the aforementioned characteristics.
One PHD model can be used in a computer-aided
design (CAD) environment to consistently describe
many different nonlinear characteristics. As with S-
parameters, the PHD approach works both ways. It
not only provides the necessary information for an
accurate automatically extracted CAD model, it also
provides a consistent framework for experimentally
verifying (testing to specifications) the large-signal
behavior of a nonlinear component under drive once
it has been produced. It can’t be overemphasized that
S-parameters are simply inadequate for both the
modeling and the characterization of driven nonlin-
ear components; S-parameters are incomplete once
nonlinear effects are present in driven systems. A nice

characteristic is that a PHD model reduces to classic
S-parameters for small input amplitudes. As such, an
LSNA instrument equipped with the means to mea-
sure a PHD model performs a superset of the mea-
surements possible with a classic VNA. As such,
LSNA instruments will gradually replace all VNAs
that are in use today to characterize semiconductor
devices all the way from R&D to manufacturing—
easily a multimillion-dollar business.

Theory

Describing Functions: A Unifying
Framework for Frequency-Domain
Nonlinear Behavioral Models
We will now introduce the theoretical foundations of
the PHD model. Similar to S-parameters, the basic
quantities we are working with are traveling voltage
waves. The waves are defined as in the case of classic
S-parameters: they are linear combinations of the sig-
nal port voltage, V, and the signal port current, I,
whereby the current quantity is defined as positive
when flowing into the DUT. The incident waves are
called the A-waves and the scattered waves are called
the B-waves. They are defined as follows:

A = V + ZcI
2

, (1)

B = V − ZcI
2

. (2)

The default value of the characteristic impedance Zc is
50 �. For certain applications, however, the choice of
another value may be more practical. One example is
power transistor applications where it may be simpler
to use a value that comes close to the output imped-
ance of the transistor, e.g., 10 �. Note that the waves
are defined based on a pure mathematical transforma-
tion of the signal port voltage and current and are not
associated with a physical wave transmission struc-
ture. Therefore, the wave quantities are more accurate-
ly called pseudowaves [1]. Also note that other wave
definitions are in use and that the convention that we
use, as described by (1) and (2), is compatible with
commercial harmonic balance simulators.

In general, we will be working with nonlinear
functional relationships between the wave quanti-
ties. This is very different from S-parameters that
can only describe a linear relationship. The PHD
approach assumes the presence of discrete tone sig-
nals (multisines) for the incident as well as for the
scattered waves. In general, these discrete tones may
appear at arbitrary frequencies, as explained in [3].
In this article, however, we will limit ourselves to the
simpler and, from a research point of view, more
mature case where the signals can be represented by
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a fundamental with harmonics. In other words, the
signals are periodic or they are narrowband modu-
lated versions of a fundamental with harmonics. In
that case, each carrier frequency can easily be denot-
ed by using the harmonic index, which equals zero
for the dc contribution, one for the fundamental, and
two for the second harmonic. In our notation for
indicating the wave variables, a first subscript refers
to the signal port and a second subscript refers to the
harmonic index. The problem we are solving can
then be formulated as follows: For a given DUT,
determine the set of multivariate complex functions
Fpm(.) that correlate all of the relevant input spectral
components Aqn with the output spectral compo-
nents Bpm, whereby q and p range from one to the
number of signal ports, and whereby m and n range
from zero to the highest harmonic index. This is
mathematically expressed as

Bpm = Fpm(A11, A12 . . . , A21, A22, . . . ). (3)

Note that we assume for now that the fundamen-
tal frequency is a known constant. The functions
Fpm(.) are called the describing functions [2]. The
concept is illustrated in Figure 1. 

The spectral mapping (3) is a very general mathe-
matical framework from which practical models can
be developed in the frequency domain. The PHD
model is a particular approximation of (3), which
involves the linearization of (3) around the signal
class discussed previously. Less-restrictive approxi-
mations are possible and are needed to describe
additional nonlinear interactions such as intermodu-
lation distortion of mixers, which is beyond the scope
of this article. The point is that starting from (3), a
systematic set of approximations, experiment
designs, and model identification schemes can be
combined to produce powerful and useful behavioral
models of driven nonlinear components. The LSNA
instruments are already capa-
ble of characterizing compo-
nents under excitations more
complicated than those need-
ed to identify the PHD model
described here. This work
will be rapidly developing in
the next several years. 

In 1995, a breakthrough
occurred when we started to
exploit certain mathematical
properties of these functions
Fpm(.) [6].

A first property is related to
the fact that Fpm(.) describes a
time-invariant system. This
implies that applying an arbi-
trary delay to the input signals,

in our case the incident A-waves, always results in
exactly the same time delay for the output signals, the
scattered B-waves. In the frequency domain, applying a
time delay is equivalent to the application of a linear
phase shift (proportional to frequency), and as such this
fact can mathematically be expressed as 

∀θ : Bpme jmθ = Fpm(A11e jθ , A12e j2θ , . . . ,

× A21e jθ , A22e j2θ , . . . ). (4)

A second property, which is of a totally different
nature, is related to the nonanalyticity of the func-
tions Fpm(.).

Phase Normalization and Linearization
In the following, both of the aforementioned properties
are exploited to derive the PHD model equations. Since
(4) is valid for all values of θ , we can make θ equal to
the inverted phase of A11, the incident fundamental.
Note that other choices of θ are also possible [3]. Our
choice is most natural for power transistor and power
amplifier applications, where A11 is the dominant large-
signal input component.

For notational elegance, we introduce the phasor 
P, defined as

P = e+ jϕ(A11). (5)

Substituting e jθ by P−1 in (4) results in

Bpm =Fpm(|A11|, A12P−2, A13P−3, . . . ,

× A21P−1, A22P−2, . . . )P+m. (6)

The advantage of (6), when compared to (3), is that the
first input argument will always be a positive real num-
ber, namely the amplitude of the fundamental compo-
nent at the input port 1, rather than a complex number.
This greatly simplifies further processing.

Figure 1. The concept of describing functions.

A1m

B2k

A2m

B1k

B1k = F1k (A11, A12, ..., A21, A22,...)

B2k = F2k (A11, A12, ..., A21, A22,...)



48 June 2006

In general, we are working under large-signal, non-
linear operating conditions, and the superposition
principle is not valid. In many practical cases, howev-
er, such as in power amplifiers stimulated with a nar-
rowband input signal, there is only one dominant
large-signal input component present (A11) whereas
all other input components (the harmonic frequency
components) are relatively small. In that case, we will
be able to use the superposition principle for the rela-
tively small input components. This is called the har-
monic superposition principle [8].

The harmonic superposition principle is graphically
illustrated in Figure 2. To keep the graph simple, we
only consider the presence of the A1m and B2n compo-
nents and we neglect the presence of the A2m and B1n

components. First, let us consider the case where only
A11 is different from zero. The input spectral compo-
nents A1m and the output spectral components B2n cor-
responding to this case are indicated by black arrows.
Note the presence of significant harmonic components
for the B2n components. Now leave the A11 excitation
the same and add a relatively small A12 component
(second harmonic at the input). This will result in a
deviation of the output spectrum B2, indicated by the
red arrows. The same holds of course for a third
(green) and a fourth (blue) harmonic. The harmonic
superposition principle holds when the overall devia-
tion of the output spectrum B2 is the superposition of

all individual deviations. This conjecture was experi-
mentally verified, as described in [8], and appeared to
be true for all practical power amplifier design cases,
whatever the class of the amplifier. The harmonic
superposition principle is the key to the PHD model.
Linearization of (6) versus all components besides the
large signal A11 leads to 

Bpm =Kpm(|A11|)P+m

+
∑

qn
Gpq,mn(|A11|)P+mRe(AqnP−n)

+
∑

qn
Hpq,mn(|A11|)P+m Im(AqnP−n), (7)

whereby

Kpm(|A11|) =Fpm(|A11|, 0, . . . 0) , (8)

Gpq,mn(|A11|) = ∂Fpm

∂Re(AqnP−n)

∣∣∣∣
|A11|,0,...0

, (9)

Hpq,mn(|A11|) = ∂Fpm

∂Im(AqnP−n)

∣∣∣∣
|A11|,0,...0

. (10)

Note that the real and imaginary parts of the input
arguments are treated as separate and independent
entities. In mathematical terms, it is said that the spec-
tral mapping function Fpm(.) is nonanalytic. The
appearance of a nonanalytic function may seem
strange since it is so often the case in engineering and
physics that we deal with analytic functions (e.g.,
exponential functions of complex arguments and
causal response functions of complex frequencies). In
fact, classic S-parameters, when considered as a
behavioral model for a linear system, result in a spec-
tral mapping function that is analytic. This fact is
clearly demonstrated in Figure 3. In this figure, we
depict the measured amplitude of H22,11(.) and
G22,11(.) as a function of |A11| for an actual RFIC power
amplifier. When |A11| is low, the S-parameter model is
valid and the amplitudes of H22,11(.) and G22,11(.) are
identical, indicating that the spectral mapping is ana-
lytic. At higher input amplitudes, H22,11(.) and
G22,11(.) start to move apart, proving that the spectral
mapping becomes nonanalytic. A mathematical proof
of the existence of such nonanalytic behavior, which is
based on a simple exercise, is given in the “On the
Origin of the Conjugate Terms” sidebar.

The PHD model equation is derived by substituting
the real and imaginary parts of the input arguments in
(7) by a linear combination of the input arguments and
their corresponding conjugates. Since

Re(AqnP−n) = AqnP−n + conj(AqnP−n)

2
, (11)

Im(AqnP−n) = AqnP−n − conj(AqnP−n)

2 j
, (12)

Figure 3. Amplitudes of G22,11(.) and H22,11(.).

|A11| (V)

0.5

0.4

0.3

0.2
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G22,11(.)

H22,11(.)

0.80.60.40.2

Figure 2. The harmonic superposition principle.
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one can write

Bpm = Kpm(|A11|)P+m +
∑

qn
Gpq,mn(|A11|)P+m

×
(

AqnP−n + conj(AqnP−n)

2

)

+
∑

qn
Hpq,mn(|A11|)

× P+m

(
AqnP−n + conj(AqnP−n)

2 j

)
.

(13)

Rearranging the terms finally leads to the relatively
simple PHD model equation

Bpm =
∑

qn
Spq,mn(|A11|)P+m−nAqn

+
∑

qn
Tpq,mn(|A11|)P+m+n conj(Aqn). (14)

Note that two new functions, Spq,mn(.) and Tpq,mn(.), are
introduced. They are defined as

Sp1,m1(|A11|) = Kpm(|A11|)
|A11|

, (15)

Tp1,m1(|A11|) =0 (16)

∀{q, n} �={1, 1} : Spq,mn (|A11|)

=Gpq,mn (A11|) − jHpq,mn(|A11|)
2

,

(17)

∀{q, n} �={1, 1} : Tpq,mn (|A11|)

=Gpq,mn (A11|) + jHpq,mn(|A11|)
2

. (18)

All of the functions Tp1,m1(.) are defined in (16) as being
equal to zero. This can be explained by the fact that the
terms in (14) with n and q equal to one are degenerate since

P+m−1A11 = P+m+1conj(A11) = |A11|. (19)

As a result, it is only the sum Sp1,m1(|A11|)+
Tp1,m1(|A11|) that matters in (14) and not the individual
functions. To define a unique value for these functions, the
value of Tp1,m1(|A11|) is defined as zero by convention. 

Intuitive Interpretations
The basic PHD model (14) simply describes that the 
B-waves result from a linear mapping of the A-waves,
similar to classic S-parameters. Some significant differ-
ences with S-parameters are explained in the following.

First of all, the right-hand side of (14) contains a con-
tribution associated with the A-waves as well as the
conjugate of the A-waves. The conjugate part is not pre-

sent at all with S-parameters. That is the case since, with
S-parameters, the contribution of an A-wave to a par-
ticular B-wave is not a function of the phase of that A-
wave. Any phase shift in A will just result in the same
phase shift of the contribution to the particular 
B-wave. This is no longer the case, however, when a
large A11 wave is present at the input of the DUT. In
that case, the large signal A11 wave creates a phase ref-
erence point for all of the other incident A-waves, and
the contribution to the B-waves of a particular A-wave

depends on the phase relationship between this partic-
ular A-wave and the large signal A11 wave. This 
relative phase dependency is expressed in (14) through
the presence of the conjugate A-wave terms. This is
clarified with the following example. Consider (14)
restricted to the simple case of a B21 (fundamental at the
output) depending on A21 (reflected fundamental at the
output) and A11 (fundamental incident at the input). In
that case, (14) is reduced to

B21 = S21,11(|A11|)A11 + S22,11(|A11|)A21

+ T22,11(|A11|)P2conj(A21). (20)

The contribution of A21 to B21 will be noted as �21B21
and is given by the two rightmost terms

�21B21 = S21,11(|A11|)A21 + T22,11(|A11|)P2conj(A21).

(21)

Dividing the left- and right-hand sides of (21) by A21
results in the large signal equivalent of the classic 
S-parameter S22

�21B21

A21
= S22,11(|A11|) + T22,11(|A11|)P2 conj(A21)

A21
.

(22)

Using (5), this can be written as

�21B21

A21
= S22,11(|A11|) + T22,11(|A11|)e− j2(ϕ(A21)−ϕ(A11)).

(23)

The large-signal S22, as calculated in (23), has two terms.
The first term is a function of the amplitude of A11 only
and behaves exactly like a classic S22 (except for the fact,
of course, that it depends on the input signal ampli-
tude). The second term is more peculiar. It depends not

The PHD modeling approach can 
be used as a natural extension of
S-parameters under large-signal
conditions.
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There are several ways to understand the nonanalyticity of the
spectral mappings Fpm(.). Perhaps the simplest is just to take the
example of a static algebraic nonlinearity (e.g., polynomial) in the
time domain and compute the mapping in the spectral domain.

We start by considering a system described by a simple
instantaneous nonlinearity containing both a linear and cubic
term. We look at the following three cases, for which the analy-
sis can be computed exactly. The first case is the linear
response of this nonlinear system around a static operating
point. This is the familiar condition for which linear S-parameters
apply. The second case is the linearization of the system around
a time-varying large-signal operating state, with the time variation
and perturbation having the same fundamental period. The third
case is a simple generalization of the second where the linear
perturbation is at a distinct frequency compared to the funda-
mental frequency of the periodically driven nonlinear system.
The objective is to look at the linearized response of the system
in the frequency domain and demonstrate that the relationship
between the perturbation phasor and its linear response phasor
is not an analytic function in cases 2 and 3, namely when the
system is driven. That is, these examples illustrate the simultane-
ous presence of both a and a* terms in the response of driven
nonlinear systems to additional injected signals.

The nonlinearity is described by 

f (x) = αx + γ x3. (1)

The signal is written as the sum of a main signal and an
additional perturbation term, assumed to be small.

x(t) = x0(t) + �x(t). (2)

The objective is to calculate the linear response of system
(1) to signals (2).

Case 1
Consider the signal x(t), given by the sum of a (real) dc com-
ponent and a small tone at frequency f = ω/2π ., i.e., 

x0(t) = A

�x(t) = δe jωτ + δ∗e− jωτ

2
.

Here, A is real and δ is a small complex number, which
allows for the phase of the perturbation tone to take any
desired value. The signal is manifestly real.

The linear response in �x(t) can be computed by

�(y(t)) = f (x0(t) + �x(t)) − f (x0(t))

≈ f ′(x0(t))�x(t) (3)

with the approximations becoming exact as �x(t) → 0. For
case 1, we evaluate the conductance nonlinearity f ′(x0),
from (1) at the fixed value x0 = A to get

f ′(A) = α + 3γ A2. (4)

Substituting (4) into (3), we obtain

�(y(t)) = [α + 3γ A2]

(
δe jωt + δ∗e− jωt

2

)
. (5)

If we look at the complex coefficient of the term proportional
to e jωt , we obtain

[α + 3γ A2]
2

δ. (6)

Since (5) is a linear input-output relationship with con-
stant coefficient, the complex Fourier component at the out-
put frequency is linearly related to the complex Fourier com-
ponent at the (same) input frequency. That is, Ŷ = G(A)X̂ ,
where X̂ and Ŷ are the complex Fourier coefficients of the
input and output small-signal phasors, respectively, and G(A)

is the gain expression from (4), which depends nonlinearly
on the static operating point but is constant in time.

Case 2
x0(t) = A cos(ωt)

�x(t) = δe jωt + δ∗e− jωt

2
.

This time we take x0(t) to be a (periodically) time-varying
signal, x0(t) = A cos(ωt). 

There is no loss of generality by taking the phase of the
large signal to be zero, since the small tone’s phase, consid-
ered as the relative phase compared to that of the large tone,
accounts for all possible differences for a time-invariant system
in the absence of a signal. This is a restatement of the time-
translation invariance of the system in the absence of drive.

Evaluating the conductance nonlinearity f ′(x0(t)) at
x0(t) = A cos(ωt), we obtain for this case

f ′(A cos(ωt)) = α + 3γ A2 cos2(ωt)

=
(

α + 3γ A2

2

)
+ 3γ A2

2
cos(2ωt).

(7)

The second form follows from a simple trigonometric identity 

cos2(ωt) = 1
2

+ cos(2ωt)
2

.

Using (7) to evaluate (3) for this case we obtain

�(y(t)) =
[(

α + 3γ A2

2

)
+ 3γ A2

2

(
e2 jωt + e−2 jωt

2

)]

×
(

δe jωt + δ∗e− jωt

2

)
. (8)

On the Origin of the Conjugate Terms
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This time we get terms proportional to e jωt and e j3ωt and
their complex conjugates; four terms in all. If we restrict our
attention, as in case 1, to the complex term proportional to
e jωt , we obtain

(
α

2
+ 3γ A2

4

)
δ + 3γ A2

4
δ∗. (9)

We observe that the output phasor at frequency ω is not just
proportional to the input phasor δ at frequency ω, but has dis-
tinct contributions proportional to both δ and δ*.

That is, the linearization of the nonlinear system, around
the simple dynamic operating point determined by the large
tone, is not analytic in the sense of complex variable theory.
If it were analytic, (9) would depend only on the complex
variable δ and not both δ and δ*.

If we take a ratio of the complex output Fourier component
to the complex input Fourier component, we obtain

�Ŷ(ω)

�X̂(ω)
=

(
α

2
+ 3γ A2

4

)
+ 3γ A2

4
e−2 jPhase(δ).

Therefore, unlike linear S-parameters, the result is not inde-
pendent of the phase of the small perturbation tone. That is,
the large tone creates a phase reference such that the linear
response of the system around the large-signal, time-varying
state depends explicitly on the relative phase of the pertur-
bation tone and the large tone.

Case 3

x0(t) = A cos(ωt) (10)

�x(t) = δe jω1t + δ∗e− jω1t

2
. (11)

Here we allow the frequency of the large tone ω and
the frequency of the perturbation tone ω1 to be distinct.
The time-varying nonlinear conductance is the same as
before, with the only difference being the frequency of the
small perturbation term in parentheses in the rightmost
factor of (12)

�(y(t)) =
[(

α + 3γ A2

2

)
+ 3γ A2

2

(
e2 jωt + e−2 jωt

2

)]

×
(

δe jω1t + δ∗e− jω1t

2

)
. (12)

Since ω1 and ω are distinct, there are more frequency com-
ponents than in the previous case. We write ω1 = ω + �,
and look at the terms proportional to e j(ω+�)t and e j(ω−�)t .
We obtain

(
α

2
+ 3γ A2

4

)
δ (13)

and

3γ A2

4
δ∗, (14)

respectively. These terms represent the single-sided spectrum of
the lower and upper sidebands of the intermodulation spectrum of
the system (1) for excitation (2), defined by (10) and (11) around
the fundamental frequency of the drive. 

We note that as the tone spacing � goes to zero, both these
contributions overlap (add) at the center frequency ω of the
time-varying drive, and we have the result of case 2.

The isolation of terms proportional to δ from those pro-
portional to δ* that results from this method remains true
for the general dynamic nonlinearity, not just the example
used in (1). In the general case, the upper and lower side-
band phasors depend on the frequency offset, � (unlike
the simple example here). Case 2, which represents the
PHD model, can be recovered using case 3 for each side-
band for finite � and then taking the limit � → 0. This
indicates that it is possible to extract each upper and lower
sideband term (per harmonic frequency component) from
measurements of the system response to a small tone of a
single, arbitrary phase [4] rather than introduce two (or
more) distinct phases to extract the two terms of (9) when
they appear together.

Examination of case 3 reveals that the complex conjugate
term, in both cases 2 and 3, results from an intermodulation
or mixing, a result of nonlinearity, and disappears as the size
of the drive signal decreases to zero. This is evident by evalu-
ating (13) and (14) [or (9) for case 2] as A → 0 in (1). The
term proportional to δ* vanishes in (14), and the terms pro-
portional to δ in (13) reduce to the result we would get for a
linear system with gain α. In the limit ω → 0, case 3 reduces
to case 1, corresponding to the system linearized around a
static operating point A. This is most easily seen by taking the
limit ω → 0 in (12). Thus, although the PHD model is repre-
sentative of case 2 (perturbation signals at exact integer mul-
tiples of the fundamental drive signal), the origins of the dif-
ferent terms are more obvious by examining the slightly
more general case 3. 

For the more general nonlinear system, the degenerate
case 2, where upper and low sidebands overlap, the two
different contributions that land on the same frequency—
necessarily a harmonic of the driven system—come from
different modulation indices. The separation of the two
terms by frequency offset allows these distinct mechanisms
related to the Fourier coefficients of the conductance non-
linearity to be independently identified from an experiment
using a single small tone at arbitrary phase, relative to the
large signal drive tone.
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only on the input signal amplitude through the function
T22,11(.) but also on the phase difference between A21
and A11 through the complex exponential. Note that it
does not depend on the amplitude of A21. As such, one
can state that the large signal S22 is described by a set of
two complex functions (with the input amplitude as
argument): a first function S22,11(.), which represents
the part independent from the phase relationship

between A21 and A11 and a second function T22,11(.),
which represents the part that depends on the phase
relationship between A21 and A11.

The significance of the T22,11(.) term is nicely
demonstrated by the measured results of Figure 4. The
figure represents a polar plot of the real and imaginary
part of the B21 phasors, whereby a set of small A21s
depicting a smiley is injected into port 2, and whereby
this experiment is done for seven different amplitudes
of A11. As such, each of the smileys corresponds to one
A11 amplitude and can be considered as a representa-
tion of the �21B21 in (21). The smiley looks undistort-
ed at low A11 amplitudes, but gets squeezed at high
A11 amplitudes. The squeezing is a direct consequence
of the presence of the T22,11(.) term since the S22,11(.)

term only describes a rotation and a scaling of the smi-
ley (the graphical equivalent of multiplying a set of
phasors by a fixed complex number).

Besides the relative phase dependency, the PHD
model has another unique feature when compared to 
S-parameters, namely that it relates input and output
spectral components that have different frequencies.
It describes, for example, how A13, the third harmon-
ic of the incident wave, will contribute to a change in
B22, the second harmonic at port 2. This corresponds
to the concept of the conversion matrix well known
to mixer designers [7]. Finally, a word on the signifi-
cance of the Ps in (14). The Ps ensure that the whole
of (14) represents a time-invariant DUT. Consider, for
example, (14) and apply a delay τ to all of the A-
waves. Define a new phasor Q, whereby f stands for
the fundamental frequency

Q = e− j2π f τ . (24)

Next, denote all delayed wave quantities by a super-
script D. One can then write

AD
qn =AqnQn, (25)

PD =PQ. (26)

Now calculate the BD-wave corresponding with the
delayed A-waves by substituting (26) and (25) into (14).
This results in

BD
pm =

∑

qn
Spq,mn(|A11|)(PQ)+m−n(AqnQn)

+
∑

qn
Tpq,mn(|A11|)(PQ)+m−nconj(AqnQn). (27)

This can be simplified to

BD
pm =

(
∑

qn
Spq,mn(|A11|)P+m−nAqn

+
∑

qn
Tpq,mn(|A11|)P+m−nconj(Aqn)

)
Qm

(28)

or simply

BD
pm = BpmQm = Bpme− j2πmf τ . (29)

In other words, the B-waves have been delayed by
the same amount τ , as one expects from a time-invari-
ant DUT. Note that this is no longer the case if one
omits the Ps in (14). The most important consequence
of the Ps is that the functions Spq,mn(.) and Tpq,mn(.) are
time-invariant properties of the DUT. Neither the
amplitude nor the phase of the functions Spq,mn(.) and
Tpq,mn(.) changes as a function of time. Although this
might seem trivial, many people get confused when
they are dealing with relationships between tones that
have different frequencies, especially when they are
looking at phase characteristics. The PHD model, as
represented by (14), provides an elegant mathematicalFigure 4. Conjugate term distorts the smiley face.
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and experimental framework to deal with the afore-
mentioned phase problem.

Nonlinear DUT Characteristics
from the PHD Model
The following illustrates how the PHD model encap-
sulates and describes different nonlinear DUT charac-
teristics. This is done by considering highly simplified
versions of (14) and demonstrating the relationship of
these simplified versions with existing nonlinear con-
cepts.

Consider, for example, a highly simplified model
containing exclusively the S21,11(.) term

B21 = S21,11(|A11|)A11. (30)

Division of both sides of (30) by A11 reveals that the
amplitude of the function S21,11(.) corre-
sponds to the compression characteristic
of the DUT, while the AM-PM conver-
sion characteristic is given by the phase
of S21,11(.)

S21,11(|A11|) = B21

A11
. (31)

Figure 5 shows the measured amplitude
and phase of S21,11(.) of an Agilent
Technologies’ HMMC-5200 wideband
microwave IC amplifier with a funda-
mental frequency of 9.9 GHz. Note that,
unless specified otherwise, all measure-
ment examples in this paragraph corre-
spond to the same device and funda-
mental frequency. Defining the result-
ing compression and AM-PM conver-
sion characteristic by means of a simpli-
fied PHD model implicitly assumes that
it is independent from harmonic com-
ponents and from the fundamental
component incident to port 2. This is
different from classic compression and
AM-PM characteristics that are being
measured on systems having imperfect
matching characteristics. As a result,
classic measurements of these charac-
teristics differ from measurement sys-
tem to measurement system. The
S21,11(.) numbers returned by a PHD
model measurement setup are compen-
sated for the nonideal instrument port
matches. For advanced measurement
setups [4] even the effects of reflected
harmonics can be included. This is actu-
ally similar to S-parameter measure-
ments on a classic VNA; although the
port match of two VNAs may signifi-

cantly differ, the S-parameters returned by the instru-
ment are not affected. As such, the measured Spq.mn(.)

and Tpq,mn(.) functions are true device characteristics,
not disturbed by instrument imperfections.

In a similar way, the S11,11(.) function can be inter-
preted as the large-signal input reflection coefficient:

S11,11(|A11|) = B11

A11
. (32)

Figure 6 shows the amplitude and phase of S11,11(.).
Note that the amplitude curve is expansive rather
than compressive. This can be explained by the fact
that the input matching circuitry has been designed
for small signals and is based on classic small-signal
S-parameters. When a large signal is being applied,
the input impedances of the transistors inside the
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Figure 5. Compression and AM-PM: S21,11(.).

Figure 6. Large-signal reflection: S11,11(.).
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circuit change because of nonlinear effects while the
matching circuits are typically linear and remain con-
stant. As a result, the matching circuits are subopti-
mal under large signal conditions, and the amount of
power reflected increases.

A similar result can be obtained for the output
match. S22,11(.) and T22,11(.) provide an original and
scientifically sound description of large signal out-
put match, sometimes referred to as Hot S22. The
simplified PHD model equation for this case is a fun-
damental-only description of the B21 wave, as
described by (20). Hot S22 behavior is tackled in a
scientifically sound way by using the combination of
S22,11(.) and T22,11(.). To our knowledge, this is an
original result. Classic Hot S22 approaches complete-
ly ignore the existence of T22,11(.) [9]. In Figures 7

and 8, we show measured values of
the amplitude and phase of S22,11(.)

and T22,11(.) as a function of the
amplitude of A11, respectively. 

As can be seen in the figures,
S22,11(.) behaves similar to S11,11(.),
the large signal input match. For
small A11 amplitudes, the output
match is pretty good, and at large
A11 amplitudes, the characteristic
expands and the output match
begins deteriorating. For small A11
amplitudes, S22,11(.) and S21,11(.)

approach the classic S-parameters
s21 and s22. T22,11(.) behaves very
differently. Its amplitude becomes
arbitrarily small when the ampli-
tude of A11 approaches zero. This
illustrates the fact that the compo-
nent T22,11(.) is only visible under
large-signal (nonlinear) operating
conditions. The amplitude of
T22,11(.) becomes significant when
compression kicks in. As such, prob-
lems can be expected with classic
Hot S22 approaches, as explained in
[9], since those approaches com-
pletely neglect the existence of this
component. Although it is not the
case in our example, the amplitude
of T22,11(.) can become even larger
than the amplitude of S22,11(.), as
described in [3].

All of the examples above refer
to a fundamental only PHD model.
In general, the approach can also
describe the generation of harmon-
ics. The simplest illustration is the
capability to predict harmonic dis-
tortion analysis (HDA) characteris-
tics. This is illustrated in Figure 9,

which shows the HDA up to the fourth harmonic.
The equations are simply

B21 =S21,21(|A11|)PA11, (33)

B23 =S21,31(|A11|)P2A11, (34)

B24 =S21,41(|A11|)P3A11. (35)

An important but more sophisticated application is
the prediction of fundamental and harmonic load-
pull behavior. In this case, we want to predict the B2h
waves (particularly B21) as a function of the matching
conditions at the output, both for the fundamental
and the harmonics. To predict the component har-
monic loadpull behavior, one needs to solve the fol-
lowing set of equations:

Figure 8. T22,11(.).
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B2k = S21,k1(|A11|)|A11| +
∑

h

S22,kh(|A11|)A2h

+
∑

h

T22,kh(|A11|)conj(A2h) (36)

A2h =�hB2h. (37)

The first set of equations represents the PHD model; the
second set is the mathematical representation of the
matching conditions. Note that the set of equations is
linear in the real and imaginary parts of A2h (consid-
ered as separate variables) and is as such easy to solve.
In the above load-pull example, it is assumed that A11
has zero phase, such that P equals one. 

Measurement Setup 
and Experiment Design
The experiment design to extract the actual values of
the PHD functions Spq,mn(.) and Tpq,mn(.) is conceptual-
ly straightforward. Assume that we want to determine
S21,11(.), S22,11(.), and T22,11(.) as they appear in (20),
and this for a particular amplitude of A11. The function
extraction process is illustrated in Figure 10. We apply
the particular A11 amplitude, and we keep it constant
during the rest of the experiment. First, we do not apply
any other incident wave besides A11 (this experiment is
represented by the red square). This results in the
knowledge of S21,11(|A11|). Next, we perform two inde-
pendent experiments, one applying an A21 with a zero
phase and one applying an A21 with a 90° phase (corre-
sponding to the blue and green square, respectively).
Having those two additional measurements, we have
sufficient information to calculate S22,11(|A11|) and
T22,11(|A11|). A typical measurement setup is shown in
Figure 11. An LSNA (Figure 12), measures all relevant
Amk and Bmk components. One synthesizer (source 1) is
used for the generation of the A11 component. Since we
are typically working in a large signal regime, the sig-
nal of this synthesizer is often amplified before being
injected towards the input signal port of the DUT. A
second synthesizer (source 2), combined with a switch,
is used for the generation of the harmonic small signal
components Amk. These signals are called tickler sig-
nals. Although three measure-
ments are theoretically suffi-
cient to extract the PHD model
functions, one usually per-
forms many more measure-
ments in combination with a
linear regression technique.
The presence of redundancy in
the measurement set offers
many possibilities in the frame-
work of system identification,
e.g., gathering information on
noise errors and residual
model errors.

An alternative approach, requiring fewer measure-
ments, is the offset-tone algorithm described in [4] (see
also the “On the Origin of the Conjugate Terms” sidebar).

Link with CAD Tools
The PHD model can be linked to harmonic balance and
envelope simulators that are capable of implementing
black-box frequency-domain models. In fact, the math-
ematical structure of the equations fits these simulators
like a glove. This results in reduced memory require-
ments and fast simulations. Model accuracy is ensured
by the fact that the PHD model is directly derived from
measurements. The accuracy statement holds as far as
the DUT is stimulated under conditions for which the
assumed harmonic superposition principle holds. 

Figure 9. Harmonic distortion analysis.
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Figure 13 represents a comparison between the
measured and modeled (by means of the PHD model)
time domain current and voltage waveforms at the
terminals of the HMMC-5200 under load-pull condi-
tions. Note that the load-pull condition was arbitrari-
ly chosen and was not part of the experimental data
used to extract the scattering functions. As one can
see, the correspondence is striking and should clearly
be sufficient for practical power amplifier design. The
modeled waveforms were calculated by evaluating
the PHD model in Agilent ADS, a commercial har-
monic balance simulator.

Complex Modulation
The PHD model, as it was presented in the above,
describes how discrete tone signals are interacting
with devices. In practice, the input signal is often not
a set of discrete tones but rather a modulated carrier.
Depending on the application, the modulation can
have many different formats. In the following, we will
show how the PHD model can be applied with signals
that are represented as a modulated carrier.

The key idea is to use a complex envelope domain
representation of the A-wave and B-wave signals and
to write the relationship between the A-waves and the
B-waves as if it is a quasistatic relationship. The idea of
the envelope domain is shown in (37), which describes
the relationship between a time domain signal x(t) and
its complex envelope representation by a series of
time-varying complex functions Xh(t)

x(t) = Re

(
∑

h

Xh(t)e j2πhfc t

)
. (38)

Note that fc represents the carrier frequency and that
there is an envelope representation for the fundamen-
tal as well as for the harmonics. When this envelope
representation is applied to the A-waves and the B-
waves, one can rewrite the PHD model (14), whereby
all wave quantities are replaced by the corresponding
time-dependent envelope representationsFigure 12. Large-signal network analyzer (XLIM, France).

Figure 13. Time domain waveforms.
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Bpm(t) =
∑

qn
Spq,mn(|A11(t)|)P(t)+m−nAqn(t)

+
∑

qn
Tpq,mn(|A11(t)|)P(t)+m−nconj(Aqn(t)).

(39)

Equation (39) can then be used to calculate the ampli-
tude and phase of the B-wave complex envelopes as a
function of the A-wave complex envelopes. The result-
ing time-dependent B-wave complex envelopes can be
transformed into the frequency
domain by a Fourier trans-
form, whereby the resulting
spectra are used to calculate
typical nonlinear parameters
such as adjacent-channel-
power-ratio (IP3, IP5,…).
Figure 14 shows an overlay of
the output spectrum of an
amplifier excited by a North
American digital cellular sig-
nal, as predicted by a simula-
tion and as predicted by a PHD
model. Contrary to the previ-
ous examples, the PHD model
was not derived from measure-
ments but from harmonic bal-
ance circuit simulations, as
explained in [4]. Note the
excellent agreement between
both characteristics. 

The question is, of course, when and to what
degree the quasistatisticity principle, as used to derive
(39), holds. Obviously, the principle will always hold
if the modulation occurs slowly enough. But how slow
is slow enough? The answer lies in the physics of the
DUT. As long as any significant change in the modu-
lation takes a longer time than the physical time con-
stants governing the behavior of the system, the
approach will work. These physical time constants are
typically related to thermal issues, internal bias cir-
cuitry dynamics, and semiconductor material trap-
ping effects. For a particular wideband RFIC, mea-
sured on wafer, the quasistatisticity principle was test-
ed and proven to be valid up to a modulation band-
width of about 1 GHz, implying that there were no
significant time constants in the system larger than
about 1 ns. This result can, of course, no longer be
guaranteed once the RFIC is packaged and all kinds of
parasitics are introduced.

Conclusions
We have presented the PHD modeling approach. It is
a black-box frequency-domain model that provides a
foundation for measurement, modeling, and simula-

tion of driven nonlinear systems. The PHD model is
very accurate for a wide variety of nonlinear charac-
teristics, including compression, AM-PM, harmon-
ics, load-pull, and time-domain waveforms. The
PHD model faithfully represents driven nonlinear
systems with mismatches at both the fundamental
and harmonics. This enables the accurate simulation
of distortion through cascaded chains of nonlinear
components, thus providing key new design verifi-
cation capabilities for RF and microwave modules
and subsystems. 
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Figure 14. Prediction of spectral regrowth.
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