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or more than a quarter of a century, microwave engineers have had the benefit

of a foundation of mutually interacting components of measurement, model-

ing, and simulation to design and test linear components and systems. This

three-legged stool included measurements of S-parameters using a calibrated

vector network analyzer (VNA), linear simulation analysis tools (e.g.,
Touchtone), and models based on S-parameter blocks, which can use measured data or
simulated frequency-dependent data.

S-parameters are perhaps the most successful behavioral models ever. They have the
powerful property that the S-parameters of individual components are sufficient to
determine the S-parameters of any combination of those components. S-parameters of a
component are sufficient to predict its response to any signal, provided only that the sig-
nal is of sufficiently small amplitude. This follows from the property of superposition,
which governs the behavior of linear systems, the systems for which S-parameters apply.
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The ability to measure, model, and simulate using S-
parameters means, in principle, every problem imagin-
able for linear system design and test is solvable.

Simply put, S-parameters are just complex num-
bers. At most, they are matrices of complex numbers
for devices or circuits with multiple ports. S-parame-
ters are important for several reasons. For one thing,
they are easy to measure. Standard vector-corrected
network analyzers easily provide the data from real
components. The data is reliable and repeatable. The
data is also useful because it represents an intrinsic
property of the device under test (DUT), independent
of the measurement system used to provide the data.
In particular, the S-parameters of a two-port system are
defined by ratios, which conveniently produce results
completely independent of the details of the stimulat-
ing signal (such as its phase). That is, the S-parameters
of a DUT are invariant with respect to the phase of the
incident wave.

Despite the great success of S-parameters, they are
severely limited. Conventional S-parameters are
defined only for linear systems, or systems behaving
linearly with respect to a small signal applied around
a static operating point (e.g., fixed bias condition of a
transistor). In fact, virtually all real systems are non-
linear. They generate harmonics and intermodulation
distortion and cause spectral regrowth. S-parameter
theory doesn’t apply to such systems. It may be a
good approximation over some range of input, but it
is incapable of even estimating the nonlinear
response of real systems.

Perhaps the most important driven nonlinear sys-
tem of interest is the power amplifier. Its entire raison
d’etre is to amplify a signal. Amplification requires an
active, nonlinear device and a time-varying signal.
Thus an amplifier, when it is actually amplifying a sig-
nal, is a driven nonlinear system, which falls outside
the class of systems for which (linear) S-parameters
apply. Most previous attempts to treat such systems as
linear systems parameterized by drive levels are, in
fact, flawed. They ignore new phenomena and terms
that appear only when nonlinear systems are driven
but for which there is no analog in linear systems. It is
not surprising that those ad hoc attempts to generalize
S-parameters result in inferences (e.g., test results, sim-
ulations, and designs) that are unreliable, nonrepeat-
able, or flat out don’t meet specs.

This article explains and then goes beyond the
limitations of simple-minded (and incorrect) general-
izations of S-parameters to driven nonlinear systems.
We will show how a simple yet rigorous framework,
with corresponding fully interoperational nonlinear
model, measurement hardware, and nonlinear simu-
lation environment, can circumvent these problems
at a very modest additional cost. If we are willing to
consider only the addition of a second complex num-
ber, (or a second matrix of complex numbers for
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devices with multiple ports), it is possible to do for
driven nonlinear systems what S-parameters do for
linear systems. Moreover, it has already been demon-
strated that there are now interoperable tools of mea-
surement systems, nonlinear models, and large-sig-
nal simulation environments ready to provide the
infrastructure for nonlinear design and test.

Imagine one could describe driven nonlinear sys-
tems in a way similar to S-parameters for linear sys-
tems. That is, imagine there was a way to measure,
model, and simulate nonlinear driven systems that
would allow correct, reliable, and repeatable inferences
of what an arbitrary arrangement of such systems
would do under drive. This capability is actually neces-
sary for multistage amplifiers, where the input stage of
the second amplifier, for example, is not perfectly
matched at the fundamental or generated harmonics
and injects signals back into the output of the prior

PHD modeling is a black-box frequency

domain modeling technique.

stage. We will demonstrate a new nonlinear model,
called the polyharmonic distortion (PHD) model,
which is perfectly mated to existing nonlinear simula-
tion capabilities that can be identified with advanced
nonlinear measurements as seamlessly as S-parameters
for the linear case.

On one hand, this might seem surprising, since
nonlinear problems are hard. Nonlinear systems
respond to signals of different shapes and sizes in an
infinite number of ways. Common questions include:
“What kind of signals should I use to stimulate the
DUT?,” “What kinds of useful inferences can I make
with this data?,” “How can I analyze this data to
make predictions of DUT behavior?,” and “Can I
measure what I need for the job with existing com-
mercially available equipment?”

PHD Modeling

PHD modeling is a black-box, frequency-domain
modeling technique. The annotation black box refers to
the fact that no knowledge is used nor required con-
cerning the internal circuitry of the DUT. All informa-
tion needed to construct a PHD model is acquired
through externally stimulating the signal ports of a
DUT and measuring the response signals. The fre-
quency domain formulation means that the approach
is well suited for distributed (dispersive) high-fre-
quency applications. This is true for both the mea-
surement techniques and the modeling approach.
Note that these considerations are true for conven-
tional linear S-parameters, which can also be consid-
ered as a black-box frequency-domain modeling
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technique. The advantage of using a black-box
approach is that it is truly technology independent. It
does not matter whether one is dealing with silicon
bipolar technology or compound semiconductor
field-effect transistors. Another advantage is that a
black-box model, unlike a circuit schematic, can be
shared with and used by other people without reveal-
ing the details of the internal circuit. In other words,
it provides complete and fundamental protection of
intellectual property. This characteristic is highly
appreciated in a business environment. Of course,
with black-box modeling, as with all engineering
solutions, there are tradeoffs to consider in practical
use conditions. Black-box models are, by definition,
only valid for signals that are close to the signals that
were used to simulate the DUT to produce the
responses used for model identification (extraction).
If the model needs to be valid across a wide range of
signals, then a wide range of excitation signals is
needed and, as a result, the measurement time will be
long and the resulting model will be complex.

The PHD model is identified from the responses
of a DUT stimulated by a set of harmonically related
discrete tones, where the fundamental tone is domi-
nant and the harmonically related tones are relative-
ly small. As such, it is typically applied for modeling
microwave amplifiers with narrowband input sig-
nals. Note that the narrowband constraint is not on
the amplifier itself but on the input signal. It is per-
fectly possible, for example, to describe the distortion
of a narrowband input signal for a wide range of car-
rier frequencies.

The basic idea is that the PHD modeling approach
can be used as a natural extension of S-parameters
under large-signal conditions. One connects a DUT to
a large-signal network analyzer (LSNA) instrument,
and a model is automatically extracted that accurate-
ly describes all kinds of nonlinear behavior such as
amplitude and phase of harmonics, compression
characteristics, AM-PM, spectral regrowth, amplitude
dependent input, and output match. The real beauty
of the approach is that it provides much more than a
bunch of plots of the aforementioned characteristics.
One PHD model can be used in a computer-aided
design (CAD) environment to consistently describe
many different nonlinear characteristics. As with S-
parameters, the PHD approach works both ways. It
not only provides the necessary information for an
accurate automatically extracted CAD model, it also
provides a consistent framework for experimentally
verifying (testing to specifications) the large-signal
behavior of a nonlinear component under drive once
it has been produced. It can’t be overemphasized that
S-parameters are simply inadequate for both the
modeling and the characterization of driven nonlin-
ear components; S-parameters are incomplete once
nonlinear effects are present in driven systems. A nice
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characteristic is that a PHD model reduces to classic
S-parameters for small input amplitudes. As such, an
LSNA instrument equipped with the means to mea-
sure a PHD model performs a superset of the mea-
surements possible with a classic VNA. As such,
LSNA instruments will gradually replace all VNAs
that are in use today to characterize semiconductor
devices all the way from R&D to manufacturing—
easily a multimillion-dollar business.

Theory

Describing Functions: A Unifying

Framework for Frequency-Domain

Nonlinear Behavioral Models

We will now introduce the theoretical foundations of
the PHD model. Similar to S-parameters, the basic
quantities we are working with are traveling voltage
waves. The waves are defined as in the case of classic
S-parameters: they are linear combinations of the sig-
nal port voltage, V, and the signal port current, I,
whereby the current quantity is defined as positive
when flowing into the DUT. The incident waves are
called the A-waves and the scattered waves are called
the B-waves. They are defined as follows:

V4 2Zd

A :
2

M

@

The default value of the characteristic impedance Z. is
50 Q. For certain applications, however, the choice of
another value may be more practical. One example is
power transistor applications where it may be simpler
to use a value that comes close to the output imped-
ance of the transistor, e.g., 10 Q. Note that the waves
are defined based on a pure mathematical transforma-
tion of the signal port voltage and current and are not
associated with a physical wave transmission struc-
ture. Therefore, the wave quantities are more accurate-
ly called pseudowaves [1]. Also note that other wave
definitions are in use and that the convention that we
use, as described by (1) and (2), is compatible with
commercial harmonic balance simulators.

In general, we will be working with nonlinear
functional relationships between the wave quanti-
ties. This is very different from S-parameters that
can only describe a linear relationship. The PHD
approach assumes the presence of discrete tone sig-
nals (multisines) for the incident as well as for the
scattered waves. In general, these discrete tones may
appear at arbitrary frequencies, as explained in [3].
In this article, however, we will limit ourselves to the
simpler and, from a research point of view, more
mature case where the signals can be represented by
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a fundamental with harmonics. In other words, the
signals are periodic or they are narrowband modu-
lated versions of a fundamental with harmonics. In
that case, each carrier frequency can easily be denot-
ed by using the harmonic index, which equals zero
for the dc contribution, one for the fundamental, and
two for the second harmonic. In our notation for
indicating the wave variables, a first subscript refers
to the signal port and a second subscript refers to the
harmonic index. The problem we are solving can
then be formulated as follows: For a given DUT,
determine the set of multivariate complex functions
Fpm(.) that correlate all of the relevant input spectral
components Ay, with the output spectral compo-
nents By, whereby g and p range from one to the
number of signal ports, and whereby m and n range
from zero to the highest harmonic index. This is
mathematically expressed as

Bym = Fym(A11, A1, Ao, Am, ). 3)

Note that we assume for now that the fundamen-
tal frequency is a known constant. The functions
Fpm(.) are called the describing functions [2]. The
concept is illustrated in Figure 1.

The spectral mapping (3) is a very general mathe-
matical framework from which practical models can
be developed in the frequency domain. The PHD
model is a particular approximation of (3), which
involves the linearization of (3) around the signal
class discussed previously. Less-restrictive approxi-
mations are possible and are needed to describe
additional nonlinear interactions such as intermodu-
lation distortion of mixers, which is beyond the scope
of this article. The point is that starting from (3), a
systematic set of approximations, experiment
designs, and model identification schemes can be
combined to produce powerful and useful behavioral
models of driven nonlinear components. The LSNA
instruments are already capa-
ble of characterizing compo-
nents under excitations more
complicated than those need-
ed to identify the PHD model
described here. This work
will be rapidly developing in
the next several years.

In 1995, a breakthrough
occurred when we started to
exploit certain mathematical
properties of these functions
Fon(.) [6].

A first property is related to
the fact that F,y(.) describes a
time-invariant system. This
implies that applying an arbi-
trary delay to the input signals,
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in our case the incident A-waves, always results in
exactly the same time delay for the output signals, the
scattered B-waves. In the frequency domain, applying a
time delay is equivalent to the application of a linear
phase shift (proportional to frequency), and as such this
fact can mathematically be expressed as

Vo : Bpmejmﬁ = Fpm(AnEje, Alzejze, cey
x Aniel? Ayel® ). “)

A second property, which is of a totally different
nature, is related to the nonanalyticity of the func-
tions Fyp ().

Phase Normalization and Linearization
In the following, both of the aforementioned properties
are exploited to derive the PHD model equations. Since
(4) is valid for all values of 6, we can make 6 equal to
the inverted phase of Ay, the incident fundamental.
Note that other choices of 6 are also possible [3]. Our
choice is most natural for power transistor and power
amplifier applications, where Aj; is the dominant large-
signal input component.

For notational elegance, we introduce the phasor
P, defined as

P = oTie(An) 5)

Substituting e/ by P~! in (4) results in

Bom =Fpm(|A11], A2P™2, Ai3P™3, ..,
x Ap1P7Y, Ay P72, . )P, (6)

The advantage of (6), when compared to (3), is that the
first input argument will always be a positive real num-
ber, namely the amplitude of the fundamental compo-
nent at the input port 1, rather than a complex number.
This greatly simplifies further processing.

M

M4

Figure 1. The concept of describing functions.
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In general, we are working under large-signal, non-
linear operating conditions, and the superposition
principle is not valid. In many practical cases, howev-
er, such as in power amplifiers stimulated with a nar-
rowband input signal, there is only one dominant
large-signal input component present (A1;) whereas
all other input components (the harmonic frequency
components) are relatively small. In that case, we will
be able to use the superposition principle for the rela-
tively small input components. This is called the har-
monic superposition principle [8].

The harmonic superposition principle is graphically
illustrated in Figure 2. To keep the graph simple, we
only consider the presence of the Ay, and By, compo-
nents and we neglect the presence of the Ay, and By,
components. First, let us consider the case where only
Aq is different from zero. The input spectral compo-
nents A1, and the output spectral components By, cor-
responding to this case are indicated by black arrows.
Note the presence of significant harmonic components
for the By, components. Now leave the Aj; excitation
the same and add a relatively small Ajp component
(second harmonic at the input). This will result in a
deviation of the output spectrum Bp, indicated by the
red arrows. The same holds of course for a third
(green) and a fourth (blue) harmonic. The harmonic
superposition principle holds when the overall devia-
tion of the output spectrum B; is the superposition of

v

Figure 2. The harmonic superposition principle.
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Figure 3. Amplitudes of Gy 11(.) and Hp2 11(.).
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all individual deviations. This conjecture was experi-
mentally verified, as described in [8], and appeared to
be true for all practical power amplifier design cases,
whatever the class of the amplifier. The harmonic
superposition principle is the key to the PHD model.
Linearization of (6) versus all components besides the
large signal Aj; leads to

By =Kpm(|A11)PH"
+ > Gpgun (1A )P Re(Agn P~")

+ qZ Hpgmn (At DPT" Im(Agu P, (7)
7
whereby
Kpm (A1) =Fpm(JA11. 0, ... 0) ®8)
Gpg.mn(|A11]) = % . ©)
Hpgmn(|An]) = % oo (10)

Note that the real and imaginary parts of the input
arguments are treated as separate and independent
entities. In mathematical terms, it is said that the spec-
tral mapping function F,,(.) is nonanalytic. The
appearance of a nonanalytic function may seem
strange since it is so often the case in engineering and
physics that we deal with analytic functions (e.g.,
exponential functions of complex arguments and
causal response functions of complex frequencies). In
fact, classic S-parameters, when considered as a
behavioral model for a linear system, result in a spec-
tral mapping function that is analytic. This fact is
clearly demonstrated in Figure 3. In this figure, we
depict the measured amplitude of Hj11(.) and
G22.11(.) as a function of |A11] for an actual RFIC power
amplifier. When |A11] is low, the S-parameter model is
valid and the amplitudes of H»> 11(.) and G2 11(.) are
identical, indicating that the spectral mapping is ana-
lytic. At higher input amplitudes, Hzp11(.) and
G22.11(.) start to move apart, proving that the spectral
mapping becomes nonanalytic. A mathematical proof
of the existence of such nonanalytic behavior, which is
based on a simple exercise, is given in the “On the
Origin of the Conjugate Terms” sidebar.

The PHD model equation is derived by substituting
the real and imaginary parts of the input arguments in
(7) by a linear combination of the input arguments and
their corresponding conjugates. Since

AP~ + conj(Agn P~

Re(AgP™") = . Coan

Ay P~ — conj(Ag, P
Im(Ag,P~") =20 Czj]( e D
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one can write

Bom = Kom (1A DPH™ 4+~ Ggmn (| A1 NP
q}’l

<Aan” + conj(Aan")>
X

2
+ Y Hpygun(| A1)
qn

« ptm (Aqnp—" + conj(Aan‘”))
2] '

13

Rearranging the terms finally leads to the relatively
simple PHD model equation

Bpm = Z Spq,mn(|A11 |)P+m_nAqn
qn

+ Y Tpgmn (A1 )P conj(Agy). (14)
qn

Note that two new functions, Spg mn(.) and Tpg,mn(.), are
introduced. They are defined as

Kpm(1A11])
S Aq|) =Py
p1.m1 (|A11]) ™

Tp1,m1(JA11]) =0 (16)

Vig, n} #1,1} 1 Spgmn (|A11])
_ Gpgn (An1]) = jHpgmn(|A11])

15

2
17)
Vig, n} #{1, 1} 1 Tpgmn (1A11D)
:qu,mn (A1) + jHpg.mn(1A11]) . (18)

2

All of the functions Ty, 1 (.) are defined in (16) as being
equal to zero. This can be explained by the fact that the
terms in (14) with n and g equal to one are degenerate since

P Ay = PP leonj(An) = |Anl. 19

As a result, it is only the sum Sy m(|Annl) +
Tp1,m (|A11]) that matters in (14) and not the individual
functions. To define a unique value for these functions, the
value of Ty 1 (|A11]) is defined as zero by convention.

Intuitive Interpretations
The basic PHD model (14) simply describes that the
B-waves result from a linear mapping of the A-waves,
similar to classic S-parameters. Some significant differ-
ences with S-parameters are explained in the following.
First of all, the right-hand side of (14) contains a con-
tribution associated with the A-waves as well as the
conjugate of the A-waves. The conjugate part is not pre-
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sent at all with S-parameters. That is the case since, with
S-parameters, the contribution of an A-wave to a par-
ticular B-wave is not a function of the phase of that A-
wave. Any phase shift in A will just result in the same
phase shift of the contribution to the particular
B-wave. This is no longer the case, however, when a
large Aj1 wave is present at the input of the DUT. In
that case, the large signal Aj; wave creates a phase ref-
erence point for all of the other incident A-waves, and
the contribution to the B-waves of a particular A-wave

The PHD modeling approach can
be used as a natural extension of
S-parameters under large-signal
conditions.

depends on the phase relationship between this partic-
ular A-wave and the large signal Aj; wave. This
relative phase dependency is expressed in (14) through
the presence of the conjugate A-wave terms. This is
clarified with the following example. Consider (14)
restricted to the simple case of a B; (fundamental at the
output) depending on Aj; (reflected fundamental at the
output) and A1 (fundamental incident at the input). In
that case, (14) is reduced to

Br1 = S21.11(JA11 D A1 + S22, 11 (A1 DA
+ To2,11(|A11)) PPconj(Ag1). (20)

The contribution of A1 to By will be noted as A1 By
and is given by the two rightmost terms

A21Bo1 = So1.11(1A11 A2t + Tan.11(|A11]) P2conj(Anr).
(21)

Dividing the left- and right-hand sides of (21) by Az
results in the large signal equivalent of the classic
S-parameter Sy

Az1Boy

nj(Az1)
A1 ’

CO
= S 11(1A11]) + T22.11(|A11 ) P? "
21

(22)
Using (5), this can be written as

A21Boy

y Sp.11(1A1 D) + Taz 11 (|Aq e A =04,

(23)

The large-signal Syy, as calculated in (23), has two terms.
The first term is a function of the amplitude of Aj; only
and behaves exactly like a classic Sy (except for the fact,
of course, that it depends on the input signal ampli-
tude). The second term is more peculiar. It depends not
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On the Origin of the Conjugate Terms

There are several ways to understand the nonanalyticity of the
spectral mappings Fpm (.). Perhaps the simplest is just to take the
example of a static algebraic nonlinearity (e.g, polynomial) in the
time domain and compute the mapping in the spectral domain.

We start by considering a system described by a simple
instantaneous nonlinearity containing both a linear and cubic
term. We look at the following three cases, for which the analy-
sis can be computed exactly. The first case is the linear
response of this nonlinear system around a static operating
point. This is the familiar condition for which linear S-parameters
apply. The second case is the linearization of the system around
a time-varying large-signal operating state, with the time variation
and perturbation having the same fundamental period. The third
case is a simple generalization of the second where the linear
perturbation is at a distinct frequency compared to the funda-
mental frequency of the periodically driven nonlinear system.
The objective is to look at the linearized response of the system
in the frequency domain and demonstrate that the relationship
between the perturbation phasor and its linear response phasor
is not an analytic function in cases 2 and 3, namely when the
system is driven. That is, these examples illustrate the simultane-
ous presence of both a and a* terms in the response of driven
nonlinear systems to additional injected signals.

The nonlinearity is described by

fx) = ax + yx>. (M

The signal is written as the sum of a main signal and an
additional perturbation term, assumed to be small.

x(t) = xo(t) + AX(t). 2)

The objective is to calculate the linear response of system
(1) to signals (2).

Case 1
Consider the signal x(t), given by the sum of a (real) dc com-
ponent and a small tone at frequency f = /27, ie,

Xot) =A
sejot +5*e—jwr

AX(t) = 5

Here, A is real and 4 is a small complex number, which
allows for the phase of the perturbation tone to take any
desired value. The signal is manifestly real.

The linear response in Ax(t) can be computed by

Ay () =fXo() + Ax(®) — f(xo(®)
~ f'(xo () Ax () (3)

with the approximations becoming exact as Ax(t) — 0. For

case 1, we evaluate the conductance nonlinearity f’(xo),
from (1) at the fixed value xo = A to get

50 IEEE mMiCrowave magazine

f'(A) = « + 3yA>. 4)

Substituting (4) into (3), we obtain

sejot 4 sxg—jot
A1) = [ + 3yA?] (%) - 3

If we look at the complex coefficient of the term proportional
to e/*t, we obtain

[ + 3yA?] 5

5 (6)

Since (5) is a linear input-output relationship with con-
stant coefficient, the complex Fourier component at the out-
put frequency is linearly related to the complex Fourier com-
ponent at the (same) input frequency. That is, ¥ = G(A)X,
where X and ¥ are the complex Fourier coefficients of the
input and output small-signal phasors, respectively, and G(A)
is the gain expression from (4), which depends nonlinearly
on the static operating point but is constant in time.

Case 2
Xo(t) = A cos(wt)
sejot +8*e—jwt

AX(t) = 5

This time we take xo(t) to be a (periodically) time-varying
signal, xo(t) = A cos(wt).

There is no loss of generality by taking the phase of the
large signal to be zero, since the small tone's phase, consid-
ered as the relative phase compared to that of the large tone,
accounts for all possible differences for a time-invariant system
in the absence of a signal. This is a restatement of the time-
translation invariance of the system in the absence of drive.

Evaluating the conductance nonlinearity f'(xo(t)) at
Xo(t) = A cos(wt), we obtain for this case

f'(Acos(wt)) = a 4 3yA? cos? (wt)

3yA2 3yA2
:<a+ ”2 >+ ”2 cos(2ut).

(7)

The second form follows from a simple trigonometric identity

1 cos(2wt)
2

)= -+ —.
cos” (wt) 5 aF 5

Using (7) to evaluate (3) for this case we obtain

3 3VA2 3]/A2 erwt+e—2jwt
A(Y(t))—|:<f¥+ 5 >+ > >

sejot 4 sxa—jot
y (L) , &

2
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This time we get terms proportional to e/t and e/3t and
their complex conjugates; four terms in all. If we restrict our
attention, as in case 1, to the complex term proportional to
e/t we obtain

o 3yA? 3yA?
= 8 5. 9
<2+ 7 ) + 2 9

We observe that the output phasor at frequency w is not just
proportional to the input phasor § at frequency w, but has dis-
tinct contributions proportional to both § and §*.

That is, the linearization of the nonlinear system, around
the simple dynamic operating point determined by the large
tone, is not analytic in the sense of complex variable theory.
If it were analytic, (9) would depend only on the complex
variable § and not both & and §*.

If we take a ratio of the complex output Fourier component
to the complex input Fourier component, we obtain

2
3yA e—szhase(B)
2 .

A)A’(w) o 3yA2

—— ==+

AX(w) (2 4 )
Therefore, unlike linear S-parameters, the result is not inde-
pendent of the phase of the small perturbation tone. That is,
the large tone creates a phase reference such that the linear
response of the system around the large-signal, time-varying
state depends explicitly on the relative phase of the pertur-
bation tone and the large tone.

Case 3

Xo(t) = A cos(wt)
aejant _"_s*efja)]t
—

(10)

Ax(t) = (1m)

Here we allow the frequency of the large tone w and
the frequency of the perturbation tone w; to be distinct.
The time-varying nonlinear conductance is the same as
before, with the only difference being the frequency of the
small perturbation term in parentheses in the rightmost
factor of (12)

3 3VA2 3VA2 e2jot + e—2jot
2822

(8€jw1t +5*e—jw1t)
X _——— ] .
2

Since w7 and w are distinct, there are more frequency com-
ponents than in the previous case. We write w1 = w + A,
and look at the terms proportional to e/ @+t and e/ (@=A)t
We obtain

(12)
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o 3yA?
- ) 13
<2+ 2 ) (13)
and
3yA2
”4 5*, (14)

respectively. These terms represent the single-sided spectrum of
the lower and upper sidebands of the intermodulation spectrum of
the system (1) for excitation (2), defined by (10) and (11) around
the fundamental frequency of the drive.

We note that as the tone spacing A goes to zero, both these
contributions overlap (add) at the center frequency  of the
time-varying drive, and we have the result of case 2.

The isolation of terms proportional to § from those pro-
portional to §* that results from this method remains true
for the general dynamic nonlinearity, not just the example
used in (1). In the general case, the upper and lower side-
band phasors depend on the frequency offset, A (unlike
the simple example here). Case 2, which represents the
PHD model, can be recovered using case 3 for each side-
band for finite A and then taking the limit A — 0. This
indicates that it is possible to extract each upper and lower
sideband term (per harmonic frequency component) from
measurements of the system response to a small tone of a
single, arbitrary phase [4] rather than introduce two (or
more) distinct phases to extract the two terms of (9) when
they appear together.

Examination of case 3 reveals that the complex conjugate
term, in both cases 2 and 3, results from an intermodulation
or mixing, a result of nonlinearity, and disappears as the size
of the drive signal decreases to zero. This is evident by evalu-
ating (13) and (14) [or (9) for case 2] asA — 0 in (1). The
term proportional to §* vanishes in (14), and the terms pro-
portional to & in (13) reduce to the result we would get for a
linear system with gain «. In the limit @ — 0, case 3 reduces
to case 1, corresponding to the system linearized around a
static operating point A. This is most easily seen by taking the
limit @ — 0 in (12). Thus, although the PHD model is repre-
sentative of case 2 (perturbation signals at exact integer mul-
tiples of the fundamental drive signal), the origins of the dif-
ferent terms are more obvious by examining the slightly
more general case 3.

For the more general nonlinear system, the degenerate
case 2, where upper and low sidebands overlap, the two
different contributions that land on the same frequency—
necessarily a harmonic of the driven system—come from
different modulation indices. The separation of the two
terms by frequency offset allows these distinct mechanisms
related to the Fourier coefficients of the conductance non-
linearity to be independently identified from an experiment
using a single small tone at arbitrary phase, relative to the
large signal drive tone.
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only on the input signal amplitude through the function
T22.11(.) but also on the phase difference between Ap;
and Ap; through the complex exponential. Note that it
does not depend on the amplitude of Aj;. As such, one
can state that the large signal Sy; is described by a set of
two complex functions (with the input amplitude as
argument): a first function Sz 11(.), which represents
the part independent from the phase relationship

The basic PHD model simply
describes that the B-waves
result from a linear mapping
of the A-waves.
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between Ap; and Aj; and a second function T2211(.),
which represents the part that depends on the phase
relationship between A and Ajy.

The significance of the T2 11(.) term is nicely
demonstrated by the measured results of Figure 4. The
figure represents a polar plot of the real and imaginary
part of the Bp; phasors, whereby a set of small Aps
depicting a smiley is injected into port 2, and whereby
this experiment is done for seven different amplitudes
of Aj1. As such, each of the smileys corresponds to one
A1 amplitude and can be considered as a representa-
tion of the Ay1Bpp in (21). The smiley looks undistort-
ed at low Aj; amplitudes, but gets squeezed at high
A1 amplitudes. The squeezing is a direct consequence
of the presence of the T2y 11(.) term since the Sp311(.)
term only describes a rotation and a scaling of the smi-
ley (the graphical equivalent of multiplying a set of
phasors by a fixed complex number).

1.5

1.25

0.75

Im Byy (V)

o
3

0.25

-125 -1 -075 -05 -025 O
Re By (V)

Figure 4. Conjugate term distorts the smiley face.
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Besides the relative phase dependency, the PHD
model has another unique feature when compared to
S-parameters, namely that it relates input and output
spectral components that have different frequencies.
It describes, for example, how Aj3, the third harmon-
ic of the incident wave, will contribute to a change in
By, the second harmonic at port 2. This corresponds
to the concept of the conversion matrix well known
to mixer designers [7]. Finally, a word on the signifi-
cance of the Ps in (14). The Ps ensure that the whole
of (14) represents a time-invariant DUT. Consider, for
example, (14) and apply a delay 7 to all of the A-
waves. Define a new phasor Q, whereby f stands for
the fundamental frequency

Q= Pf7, (24)

Next, denote all delayed wave quantities by a super-
script D. One can then write

qu :Aanns (25)
PP =pQ. (26)

Now calculate the BP-wave corresponding with the
delayed A-waves by substituting (26) and (25) into (14).
This results in

Bhy = D Sppnn (1A D (P " (43u Q")
qn

+ 3 Togum (1A (PQ) " "conj(Ag Q™). (27)
qn

This can be simplified to

B;l;)m = (Z Spq,mn(|A11|)P+M7nAqn
qn

+ Z qu,mn(|A11 |)P+m_nconj(Aqn)) Qm
qn
(28)

or simply
Bpo — Bmem — Bpme—ﬂnmfr_ (29)

In other words, the B-waves have been delayed by
the same amount 7, as one expects from a time-invari-
ant DUT. Note that this is no longer the case if one
omits the Ps in (14). The most important consequence
of the Ps is that the functions Spg i, (.) and Tpg ma(.) are
time-invariant properties of the DUT. Neither the
amplitude nor the phase of the functions Sy, mn(.) and
Tpg.mn(.) changes as a function of time. Although this
might seem trivial, many people get confused when
they are dealing with relationships between tones that
have different frequencies, especially when they are
looking at phase characteristics. The PHD model, as
represented by (14), provides an elegant mathematical
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and experimental framework to deal with the afore-
mentioned phase problem.

Nonlinear DUT Characteristics
from the PHD Model
The following illustrates how the PHD model encap-
sulates and describes different nonlinear DUT charac-
teristics. This is done by considering highly simplified
versions of (14) and demonstrating the relationship of
these simplified versions with existing nonlinear con-
cepts.

Consider, for example, a highly simplified model
containing exclusively the 531 11(.) term

Bo1 = Sp1,11(JA11 D) A11. (30)

Division of both sides of (30) by Aj; reveals that the
amplitude of the function Sy 11(.) corre-

sponds to the compression characteristic
of the DUT, while the AM-PM conver-

cantly differ, the S-parameters returned by the instru-
ment are not affected. As such, the measured Spg.nn(.)
and Tpg,mn(.) functions are true device characteristics,
not disturbed by instrument imperfections.

In a similar way, the S11,11(.) function can be inter-
preted as the large-signal input reflection coefficient:

Sun(lAnl) = % (32
11
Figure 6 shows the amplitude and phase of Sq1.11(.).
Note that the amplitude curve is expansive rather
than compressive. This can be explained by the fact
that the input matching circuitry has been designed
for small signals and is based on classic small-signal
S-parameters. When a large signal is being applied,
the input impedances of the transistors inside the

Sie1, 11)

sion characteristic is given by the phase 12
of S$p1.11() Amplitude ——
g : ——t—— 110
Sa1.11(lAn) = % (€1Y)
1 _ {105
i% 10}
Figure 5 shows the measured amplitude § 1100
and phase of Sy111() of an Agilent = 9r
Technologies” HMMC-5200 wideband E {95
microwave IC amplifier with a funda- 8t
mental frequency of 9.9 GHz. Note that, 190
unless specified otherwise, all measure- 71
ment examples in this paragraph corre- 85
spond to the same device and funda- -3 25 20 -15 -10 -5 0 5 10
mental frequency. Defining the result- |A41 (dBm)
ing compression and AM-PM conver-
sion characteristic by means of a simpli-  Figure 5. Compression and AM-PM: Sy1 11(.).
fied PHD model implicitly assumes that
it is independent from harmonic com-
ponents and from the fundamental
component incident to port 2. This is S, 11)
different from classic compression and -7 Amplitude” —¢c— —i
AM-PM characteristics that are being 8¢
measured on systems having imperfect -9t
matching characteristics. As a result, — 10}
classic measurements of these charac- % 11l
teristics differ from measurement sys- § 10l
tem to measurement system. The £
S71.11(.) numbers returned by a PHD g -131
model measurement setup are compen- —14}
sated for the nonideal instrument port -15}
matches. For advanced measurement 16l
setups [4] even the effects of reflected 17
harmonics can be included. This is actu- -8 25 20 -15 -10 -5 0 5 10
ally similar to S-parameter measure- |Aq41 (dBm)

ments on a classic VNA; although the
port match of two VNAs may signifi-
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Figure 6. Large-signal reflection: S11.11(.).
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and 8, we show measured values of
the amplitude and phase of S 11(.)

6 Siez, 11) YT _60 and Tp11(.) as a function of the
mplitude —o— . .
?:, "o 65 amplitude of Ay, res.pectlvel.y.
-8r As can be seen in the figures,
=70 S22.11(.) behaves similar to S11.11(.),
%‘ -9 _75 the large signal input match. For
< _12f Vol = small Aj; amplitudes, the output
E % match is pretty good, and at large
E. —14¢ -85 £ A amplitudes, the characteristic
< -90 expands and the output match
-16r _95 begins deteriorating. For small Ajq
gl amplitudes, Sy.11() and Sp11(.)
—-100 . '
approach the classic S-parameters
20 ; : ; ' : : -105 sp1 and sp. T .) behaves ver
30 25 20 -5 -10 -5 0 5 10 21 2. T210) y
A, (dBm) differently. Its amplitude becomes
" arbitrarily small when the ampli-
Fi tude of Ajy approaches zero. This
igure 7. So1.11()- illustrates the fact that the compo-
nent Ty 11(.) is only visible under
large-signal (nonlinear) operating
conditions. The amplitude of
Tiez, 11) _ 0 T2.11(.) becomes significant when
-10 Amplitude —o— compression kicks in. As such, prob-
Phase —— . .
- lems can be expected with classic
Y a Hot Sy» approaches, as explained in
%‘ _30 [9], since those approaches com-
- -100 & pletely neglect the existence of this
E -40 % component. Although it is not the
?El 1450 & case in our example, the amplitude
< 50 of T2 .11(.) can become even larger
60 | s than .the ;.imphtude of S»11(.), as
described in [3].
-70 All of the examples above refer
—250
30 25 20 -5 10 -5 0 5 10 ’;o a fundalmf}r:tal only PI}-llD modlel.
Ayl (dBm) n general, the approach can also

Figure 8. T2 11(.).

IEE

circuit change because of nonlinear effects while the
matching circuits are typically linear and remain con-
stant. As a result, the matching circuits are subopti-
mal under large signal conditions, and the amount of
power reflected increases.

A similar result can be obtained for the output
match. S311(.) and T2;.11(.) provide an original and
scientifically sound description of large signal out-
put match, sometimes referred to as Hot Sy;. The
simplified PHD model equation for this case is a fun-
damental-only description of the By; wave, as
described by (20). Hot Sy, behavior is tackled in a
scientifically sound way by using the combination of
S22.11(.) and T2211(.). To our knowledge, this is an
original result. Classic Hot Sy approaches complete-
ly ignore the existence of Ty 11(.) [9]. In Figures 7

E microwave magazine

describe the generation of harmon-

ics. The simplest illustration is the

capability to predict harmonic dis-

tortion analysis (HDA) characteris-

tics. This is illustrated in Figure 9,
which shows the HDA up to the fourth harmonic.
The equations are simply

By1 =521,21(JA111) PA11, (33)
Bos =S51.31(1A11 D P?An, (34)
Bos =Sp1.41(|A11 )PP Aqy. (35)

An important but more sophisticated application is
the prediction of fundamental and harmonic load-
pull behavior. In this case, we want to predict the By,
waves (particularly By1) as a function of the matching
conditions at the output, both for the fundamental
and the harmonics. To predict the component har-
monic loadpull behavior, one needs to solve the fol-
lowing set of equations:
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Bok = Sar s (1A DAL+ > S22 (1 A11 D Aoy
Tt

+ Y Top k(A1 eonj(Agp) (36)
h
AZh =thZh' 37)

The first set of equations represents the PHD model; the
second set is the mathematical representation of the
matching conditions. Note that the set of equations is
linear in the real and imaginary parts of Ay, (consid-
ered as separate variables) and is as such easy to solve.
In the above load-pull example, it is assumed that Ay
has zero phase, such that P equals one.

Measurement Setup

and Experiment Design

The experiment design to extract the actual values of
the PHD functions Spg,mn(.) and Tpg mn(.) is conceptual-
ly straightforward. Assume that we want to determine
S21.11(.), S22,11(.), and T2 11(.) as they appear in (20),
and this for a particular amplitude of A11. The function
extraction process is illustrated in Figure 10. We apply
the particular Aj; amplitude, and we keep it constant
during the rest of the experiment. First, we do not apply
any other incident wave besides A1y (this experiment is
represented by the red square). This results in the
knowledge of S»1,11(|A111). Next, we perform two inde-
pendent experiments, one applying an Ap; with a zero
phase and one applying an Ap; with a 90° phase (corre-
sponding to the blue and green square, respectively).
Having those two additional measurements, we have
sufficient information to calculate Spp11(JA11]) and
T2.11(IA11]). A typical measurement setup is shown in
Figure 11. An LSNA (Figure 12), measures all relevant
Ak and B, components. One synthesizer (source 1) is
used for the generation of the A1; component. Since we
are typically working in a large signal regime, the sig-
nal of this synthesizer is often amplified before being
injected towards the input signal port of the DUT. A
second synthesizer (source 2), combined with a switch,
is used for the generation of the harmonic small signal
components A,x. These signals are called tickler sig-
nals. Although three measure-

ments are theoretically suffi-

cient to extract the PHD model

functions, one usually per-

forms many more measure-

An alternative approach, requiring fewer measure-
ments, is the offset-tone algorithm described in [4] (see
also the “On the Origin of the Conjugate Terms” sidebar).

Link with CAD Tools

The PHD model can be linked to harmonic balance and
envelope simulators that are capable of implementing
black-box frequency-domain models. In fact, the math-
ematical structure of the equations fits these simulators
like a glove. This results in reduced memory require-
ments and fast simulations. Model accuracy is ensured
by the fact that the PHD model is directly derived from
measurements. The accuracy statement holds as far as
the DUT is stimulated under conditions for which the
assumed harmonic superposition principle holds.

Harmonic Amplitude

(dBm)
=

25 20 -15 -10 -5 0 5
1Al (dBm)

Figure 9. Harmonic distortion analysis.

Im
Im
Re
| Re

Input A,

Output By,

Figure 10. Parameter extraction procedure.

ments in combination with a
linear regression technique.
The presence of redundancy in
the measurement set offers

Source 1

Bias Supply 2
10 dB}—+ é. ==
CH1CH3
LSNA
CH2 CH4

many possibilities in the frame-
work of system identification,
e.g., gathering information on
noise errors and residual

Source 2

model errors.
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Figure 11. Measurement setup.
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Figure 13 represents a comparison between the
measured and modeled (by means of the PHD model)
time domain current and voltage waveforms at the
terminals of the HMMC-5200 under load-pull condi-
tions. Note that the load-pull condition was arbitrari-
ly chosen and was not part of the experimental data
used to extract the scattering functions. As one can
see, the correspondence is striking and should clearly
be sufficient for practical power amplifier design. The

modeled waveforms were calculated by evaluating
the PHD model in Agilent ADS, a commercial har-
monic balance simulator.

Complex Modulation

The PHD model, as it was presented in the above,
describes how discrete tone signals are interacting
with devices. In practice, the input signal is often not
a set of discrete tones but rather a modulated carrier.
Depending on the application, the modulation can
have many different formats. In the following, we will
show how the PHD model can be applied with signals
that are represented as a modulated carrier.

The key idea is to use a complex envelope domain
representation of the A-wave and B-wave signals and
to write the relationship between the A-waves and the
B-waves as if it is a quasistatic relationship. The idea of
the envelope domain is shown in (37), which describes
the relationship between a time domain signal x(¢) and
its complex envelope representation by a series of
time-varying complex functions X, ()

x(H) = Re (Z Xh(t)eﬂ”hfcf> : (38)
h

Note that f, represents the carrier frequency and that
there is an envelope representation for the fundamen-
tal as well as for the harmonics. When this envelope
representation is applied to the A-waves and the B-
waves, one can rewrite the PHD model (14), whereby
all wave quantities are replaced by the corresponding
time-dependent envelope representations

1.0 | 1.0
05 0.5
— : 0.0
= 0.0 s
= E s -0.5 -
05 1.0
_1.0-IIIIlIIIIIIIIIlIIIIIIIIIIIIIIlIIII _1-5 llllllllllllllllllllllllllllllllll
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (ps) Time (ps)
0.05
0.010 !
0.005 e
< 0.000 < 0.00
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_0-010-IIII|IIIIlIIIIlIIII|IIII|IIII|IIII _004 IIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIII
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PHD-Model Versus Measurements for HMIMC-5200 with 27-Q Load

Figure 13. Time domain waveforms.
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Bon(®) =Y _ Spg.mn (A1 (D)P(H T " Agu ()
qn

+ Y Tpgmn (A1 (D) PH " " conj(Aga(t).
qn

39)

Equation (39) can then be used to calculate the ampli-
tude and phase of the B-wave complex envelopes as a
function of the A-wave complex envelopes. The result-
ing time-dependent B-wave complex envelopes can be
transformed into the frequency
domain by a Fourier trans-
form, whereby the resulting

tion of driven nonlinear systems. The PHD model is
very accurate for a wide variety of nonlinear charac-
teristics, including compression, AM-PM, harmon-
ics, load-pull, and time-domain waveforms. The
PHD model faithfully represents driven nonlinear
systems with mismatches at both the fundamental
and harmonics. This enables the accurate simulation
of distortion through cascaded chains of nonlinear
components, thus providing key new design verifi-
cation capabilities for RF and microwave modules
and subsystems.

Transmitted Spectrum

spectra are used to calculate

typical nonlinear parameters o
such as adjacent-channel- —20 1
power-ratio  (IP3, IP5,...). _40 -
Figure 14 shows an overlay of IS

the output spectrum of an % 60 1
amplifier excited by a North g _80 4
American digital cellular sig- <

nal, as predicted by a simula- —100 7
tion and as predicted by a PHD 120 1
model. Contrary to the previ- 0

ous examples, the PHD model
was not derived from measure-
ments but from harmonic bal-
ance circuit simulations, as
explained in [4]. Note the
excellent agreement between
both characteristics.

The question is, of course, when and to what
degree the quasistatisticity principle, as used to derive
(39), holds. Obviously, the principle will always hold
if the modulation occurs slowly enough. But how slow
is slow enough? The answer lies in the physics of the
DUT. As long as any significant change in the modu-
lation takes a longer time than the physical time con-
stants governing the behavior of the system, the
approach will work. These physical time constants are
typically related to thermal issues, internal bias cir-
cuitry dynamics, and semiconductor material trap-
ping effects. For a particular wideband RFIC, mea-
sured on wafer, the quasistatisticity principle was test-
ed and proven to be valid up to a modulation band-
width of about 1 GHz, implying that there were no
significant time constants in the system larger than
about 1 ns. This result can, of course, no longer be
guaranteed once the RFIC is packaged and all kinds of
parasitics are introduced.

Conclusions

We have presented the PHD modeling approach. It is
a black-box frequency-domain model that provides a
foundation for measurement, modeling, and simula-
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Figure 14. Prediction of spectral regrowth.
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